
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Who, Why, What and How 
  



Who, Why, What and How 

 
 
 
 
 
 
 
 
 
 

“meta is as meta does…” 
  

 
 



Who, Why, What and How 

The purpose of this document is to introduce you to “who” Meta-House is, why 
this application is being developed, what types of entities Meta-House tracks, and 
how dependencies between entities are established and resolved. The following 
conventions are used throughout this document: 
 

• Terms that are Meta-House specific will be bolded when they are first 
introduced. 

• When discussing scenarios or examples the identities of Meta-House 
entities will be shown in italics. 

• Frequently asked questions will be displayed throughout the document in 
a gray text box. 

Who Is Meta-House? 
Meta-House is a web-based application for tracking entities located throughout 
the NEACC and NASA landscapes. An entity can be a physical object such as a 
database or a logical object such as a migration activity. Entities can be 
conceptual such as the application CMM or concrete such as CMM version 1.0.3.  
 
An entity “lives” in Meta-House only in the sense that all of it’s metadata is stored 
here. This can include things that are common to all entities such as name, 
description, version, contacts, documents, tags and more.  There is also metadata 
that will be distinct to certain entity types. For example a webservice will have a 
list of URLs that the service can be accessed by but this particular information 
isn’t available for a database. An important type metadata tracked by Meta-
House are dependencies. Dependencies define relationships between entities 
and will be discussed in detail in the how section of this document. 
 
Meta-House is being developed under a set of guidelines that is referred to as the 
Meta-House philosophy. The Meta-House philosophy includes the following 
core principles: 
 

1. Entities within Meta-House should be easily and quickly findable. Entities 
that users can’t (or aren’t willing to) find are of no value. No design or 
implementation decision should ever be made that impacts end-users’ 
ability to find entities within Meta-House in a negative fashion. 

2. Do not take on the role of a repository. NASA has many repositories for 
storing objects throughout its landscape.  As its name implies Meta-House 
is attempting to store only meta-information about entities, which can 
include information about how data from existing repositories is accessed. 

3. Do not hold the data within Meta-House hostage. Meta-House will provide 
an initial web based application for interacting with Meta-House data but 
this web application and the data it consumes will always be considered 
two distinct things. Meta-House will also provide a programmatic API for 
interacting with the data so that it can be consumed and used in other 
applications other than the just the Meta-House web application. In time 

 
 



Who, Why, What and How 

we hope this leads to a broader adoption of the Meta-House data as 
canonical and also broadens the use and application of how the data is 
consumed (see Twitter). 

4. Adhere to the restful principals of the web. We consider Meta-House a 
restful application for the follow reasons.  Meta-House: 

o Has consistent and hierarchical based URLs. 
o Properly implements the HTTP verbs. 
o Has multiple representations of resources. 
o Has stateless communication. 
o Is cacheable. 

Why Meta-House? 
The following are the reasons that Meta-House is being developed: 
 

1. Entity discoverability. There is no current way to search for NEACC 
entities such as applications or webservices. Users requiring new 
functionality will be able to determine if entities already exists that meet 
their business need. Users looking for meta-information (such as 
documentation or contact information) on entities they know exists will 
quickly be able to look these entities up and find the desired attributes. 

2. Dependency matrix. There is no central location that tracks dependencies 
between entities in the NEACC landscape. This information is needed 
most in times of crisis. When one or more entities becomes unavailable it 
is then important to know what other entities will be affected by this 
outage so that the proper precautions and communications can be made. 
This information is usually determined (and re-determined) on an as 
needed by the business and/or technical owners of the entities in question. 
Meta-House will automate this dependency matrix so that the information 
can be found quickly and consistently. 

3. Entity and calendar integration. Meta-House includes support for the 
NEACC calendar, which will include planned activities and unplanned 
outages. Since both sets of data are contained with Meta-Data the 
integration between events and the entities that are affected by these 
events will be seamless.  

4. Targeted user notifications.  Current communication regarding NEACC 
entities involves mass email notifications. While there are users that are 
interested in this information and for them this does technically work, 
there are also many other users that no doubt aren’t sure why they are 
receiving the email and aren’t interested in what it says. In most contexts 
email with these characteristics would be categorized as spam. Instead of 
having all notifications pushed upon them via email lists, Meta-House 
introduces a user pull model where users can subscribe to only the entities 
they are concerned about and then only receive notifications about them.  

5. Multiple channels of notification. Meta-House will provide other channels 
of notification than just email. Initially user configurable RSS feeds will be 

 
 



Who, Why, What and How 

supported where users can register to their (or someone else’s) RSS feed 
using their favorite RSS reader. This feed will be updated with any changes 
to entities that the owner of the feed has subscribed to. In later releases of 
Meta-House other means of notification will be introduced including 
instant messaging and mobile phone alerts. 

6. Automatic provisioning of NEACC developed entities. Meta-House will 
incorporate run-time bindings that support the automatic provisioning of 
metadata utilized by components deployed in-house on the NEACC owned 
application / web stack. 

What Entities Does Meta-House Track? 
Meta-House keeps track with a variety of entity types. Distinguishing between the 
different types can at times be confusing but an end-user will be more concerned 
about finding their particular entity (or entities) than what type it is categorized 
as. For example if a user wanted to be notified when any changes to SAP occurred 
they would simple search on the term “SAP” to add this to their list. Whether or 
not SAP was categorized as a system or application would be immaterial for what 
they are trying to accomplish. Provisioners of Meta-House don’t have this luxury 
and need to have a good understanding of the different types since they will be 
the ones categorizing them. 
 
The base type tracked in Meta-House is an entity. Any entity that is searchable 
from within Meta-House is known as a prime.  For an entity to be searchable 
(and therefore a prime) it must show up as a top-level result from one of the 
search views within Meta-House such as the main search page or the advanced 
search page. For example if there is an application tracked within Meta-House 
named Fred which is has the application versions 1.0.0 and 1.1.0 and you type 
“Fred” in the search bar the application Fred will come up in the results but not 
the application versions. You can only get to the application version pages from 
the Fred application page (or by typing the application version identity directly 
into the URL bar). Therefore an application is a prime but an application version 
is not.  There are five main types of primes in Meta-House: locations, events, 
systems, deployed primes, and profiles.   

Locations 
A location is a logical place that other entities within Meta-House may reside. For 
example an application version will be deployed into one more locations. There 
are two types of locations that Meta-House tracks environments and 
landscapes.  An environment is a logical location where end-user data resides 
(and therefore end-users interact with).  For example there may be a version of 
the CMM application that runs in the environment QA1. This means that the end-
user data is distinct from other environments (such as QA2, or P01).  
 

 
 



Who, Why, What and How 

 
 
A landscape is a location that supports multiple environments but that doesn’t 
contain any end-user data itself. A landscape is used for entities that can support 
multiple environments (within a single deployment) which is useful in reducing 
the number of resources required to support all of NEACC’s many environments. 
For example an ESB server may live in the Release Major landscape and support 
the environments YE0, TST, and CN1. Even though end-user data will flow 
through the landscape Release Major (as in the case of an ESB web service) it will 
all be tied to one of the environments this landscape supports.  If landscapes 
didn’t exist then there would have to be three ESB deployments for these three 
environments (consuming additional server resources) even though the total load 
for each environment is quite low. 

Events 
Events are the only entities in Meta-House that are associated with a specific time 
range. Because they are primes they show up in top level results of search queries 
but events also have their own special view in Meta-House, the calendar.  There 
are two types of events: activities and outages. 
 
Activities are planned events that will affect other entities tracked by Meta-
House. Activities will have a predetermined time window in which they are 
expected to be active. 
 
Outages are unplanned events that are caused by entities tracked by Meta-House 
becoming unavailable.  Outages will usually only have a start time and an 
estimated end time window since the exact window the outage occurs in isn’t 
usually known. 

Systems 
A system is an infrastructure type entity such a database, ESB, NED, SAP and 
BW. Although systems can sometimes be accessed directly by end-users, they are 
usually consumed only by other entities. Systems are free or self-standing. This 
means they don’t have to be deployed into another entity to run but run on their 
own. For example a webservice can only run when it’s deployed into an ESB. It 
doesn’t run by itself.  A database on the other hand doesn’t have this deployment 
requirement. It runs on its own.   

What are end-users and end-user data? 
End-users are the people who consume Meta-House entities to 
perform some business function. They and the business function they 
perform are the ultimate reason that Meta-House exists.  Not all 
entities are consumed directly by end-users, some are consumed by 
other entities; however, they still assist the end-users in accomplishing 
their task. End-user data is the data that end-users create and 
consume from entities as they perform their business task. 

 
 



Who, Why, What and How 

 
Another characteristic of systems is that they can only depend on other systems. 
If a system depends on an entity that is not a system it must be categorized as 
something else (probably an application). Systems can be located in both 
environments and/or landscapes. In addition to the previous characteristics 
some systems have the ability to host (or to run) other entities from within it. For 
example an application server (system) may have one or more applications 
deployed to it. 
 
A system is a concrete entity type in Meta-House (as opposed to a prime which is 
abstract). For example SAP and NED are categorized as systems. There are two 
additional specific types of systems: ESBs (enterpriser service bus) and 
application servers. These are distinguished from other systems within Meta-
House because eventually they will use Meta-House for all their provisioning.  
Because they will interact directly with Meta-House (as opposed to other systems 
that have no knowledge of it) ESB and application server entity types are 
collectively referred to as managed systems.  An ESB is the system used for 
entity integration and entity data exposure (sometimes these are the same thing). 
An application server is the system used to host NEACC developed applications. 
Managed systems always live in landscapes whereas unmanaged systems may 
live in environments and/or landscapes. 
 

 

Deployed Primes 
A deployed prime is a prime that contains deployable versions. These versions are 
typically deployed to one more systems in one or more locations. For example the 
application NPROP may have version 1.0.0 deployed to an application server in 
production and version 1.0.1 deployed to an application server in development.  
The versions of deployed primes are not primes themselves because they aren’t 
displayed in any top-level search results. You get to a deployed prime version in 
Meta-House by first going to its deployed prime view (or by entering the id of the 
version directly in the browser address bar). 
 
There are two types of deployed primes services and artifacts.  

How would a non-NEACC ESBs or application servers be 
categorized? 
We are currently using the very generic terms ESB and application 
server to describe the NEACC developed specific implementation of 
these. Non-NEACC ESBs and application servers would be categorized 
as normal (unmanaged) systems because they wouldn’t be using Meta-
House for provisioning. We don’t currently have examples of this so 
it’s not really an issue but we may have to change the managed 
systems terminology if it becomes confusing in the future. 

 
 



Who, Why, What and How 

Services 
Services perform some end-user business function and are only consumed by 
other services or directly by end-users. The types of services include: 
applications, webservices, and components.  
 
An application is an entity that is directly consumed by end-users or other 
services. End-users can consume applications from their browser, desktop, 
phone, command line, and more with many applications supporting more than 
one of these access mechanisms. An application in Meta-House is either managed 
or unmanaged. Managed applications are deployed into NEACC’s application 
server and have one or more application server profiles (more on this later) that 
map out its deployment. Managed application versions will be deployed to one or 
more landscapes. Unmanaged applications are applications that aren’t deployed 
to NEACC’s application server and many times will be developed by outside 
vendors. These applications have no knowledge of Meta-House and their 
unmanaged versions will be deployed to one or more environments. Note that 
from a Meta-House end-user perspective these are both just applications having 
slightly different metadata. A provisioner, however, will have to be able 
understand the difference the two. 
 

 
 

 
 
A webservice is a HTTP based service that is always consumed by other services. 
A webservice can have a number of different bindings including plain XML, 

How should an application and an application server that is 
the same be categorized? 
Sometimes there will be (unmanaged) applications that run in an (non-
NEACC) application server but since it’s the only application in this 
application server the two entities are treated as a single one. 
Provisioning dual entities (Unmanaged Application and Application 
Server) for these instances is duplicative. The Unmanaged Application 
entity should be provisioned as additional dependencies are captured.  

What’s the difference between a system and an application? 
The difference between a system and an application can sometimes be 
confusing. Both can be consumed by end-users and other entities (the 
only type of entities that have this characteristic). While they both 
support this dual consumption an application will mostly be consumed 
by end-users and system will mostly be consumed by other entities.  
Another difference is that systems are self-standing and don’t require 
another entity to run in. Applications will typically require some type of 
application server (whether NEACC’s or another) to run. Finally 
systems can only depend on other systems while applications don’t have 
this restriction. 
 
 

 
 



Who, Why, What and How 

JSON, and SOAP.  Like applications, webservices can be managed or unmanaged. 
Managed webservices run inside NEACC’s ESB and can reference a set of ESB 
profiles that drive how it is deployed. Managed webservices live in landscapes.  
Unmanaged webservices do not run in NEACC’s ESB and live in environments. 
 
A component is a type of service that is always consumed by other services. 
Components are specific to NEACC’s ESB and represent a unit of business logic 
or function within the ESB. For example most managed webservices only 
perform message level validation on the request and then forward the request to 
a component to perform the business logic. 

Artifacts 
Artifacts are entities that are used by services in accomplishing their tasks and 
are many times re-used across multiple services. Artifacts are more passive in 
nature than services (or systems). An artifact is either present or not with no 
sense of it being inactive or down. The types of artifacts include schemas, 
WSDLs, and bundles.  
 
Schemas define the structure of XML based documents and are themselves XML. 
Schemas are referenced by WSDLs and are consumed by services to perform 
message validation on XML documents received and sent. 
 
WSDLs (webservice description language) define the interaction of both 
webservice and component based interfaces. They are consumed by these entities 
to perform message interaction validation. 
 
A bundle is library of reusable code that services execute to accomplish their 
tasks. Bundles are specific for NEACC based managed systems and can be OSGi-
based bundles or plain Java libraries. 

Profiles 
A profile is an entity that is used to tie managed deployed primes to managed 
systems in a flexible manner. Profiles are specific to NEACC developed entities. 
There are two types of profiles ESB profiles and application server profiles.  
 
An ESB profile is used to join webservices, components, and bundles to specific 
ESB systems. For example let’s assume the webservice Foo has a dependency on 
the ESB profile Real-Time. If Foo has a webservice version 1.2.3 that is deployed 
to the landscape Release-Major then this webservice will be installed on all ESBs 
in the landscape Release-Major that also have a dependency on the profile Real-
Time. In this manner managed deployed primes that run on the ESB don’t need 
to be updated every time a new ESB is added. The newly added ESB just needs to 
depend on the appropriate ESB profiles and the correct entities will automatically 
be installed. 
 
Application server profiles are used in the exact same way to join applications 
and bundles to application servers. For example the application Bar has a 

 
 



Who, Why, What and How 

dependency on the application server profile Beta. If the application version Bar 
0.0.1 is deployed to the production landscape then this entity will be installed on 
application servers in production that depend on the application profile Beta. 

How Are Meta-House Dependencies Established? 
A dependency between entities represents a relationship from one entity to 
another. What this dependency actually means is relative to the entities involved 
(the dependency context). For example a dependency from an application to a 
system database means that the application depends on the database to execute 
its business function. A dependency between an activity and a webservice means 
that the referenced webservice will be affected (or is part of) the activity. 
 
Dependencies in Meta-House have the following simplifying limitations: 
 

• A dependency is always between exactly two entities. The owner of the 
dependency and the referenced entity of the dependency. 

• Dependencies are one way. If a mutual dependency exists between entity A 
and entity B then two dependencies must be defined. One from A to B and 
one from B to A. 

• Dependencies are absolute. There is no varying degree about how much 
one entity depends on another.  This will mean different things for 
different dependency contexts but for example if an application has a 
dependency on a system it is assumed the system is required for the 
application to do it’s normal job. If the application can do it’s normal job 
without the presence of the system then there shouldn’t be a dependency 
defined between the two. 

 
In the remainder of this section we will discuss what type of dependencies that 
each Meta-House entity has and what these mean. 

Locations 
Environments are one of the few entities that have no dependencies. Landscapes 
have one type of dependency and that is on one or more environments. This 
dependency means that other entities deployed to this landscape (applications, 
webservices, etc.) can run in this environment for all end-user data access. For 
example if a webservice was deployed to the landscape Release-Minor and this 
landscape depended on the environment TST this would mean this webservice 
could run again TST systems. 
 
 
 

 
 



Who, Why, What and How 

 
 

Events 
Both types of events (activities and outages) can have dependencies to locations, 
systems, and services. A dependency from an event to a location means that this 
is the logical place (or places) that this event will occur. A dependency to systems 
and services means that those entities will be affected by this event in the logical 
places that this event depends on. For example if we have an outage event that 
depends on the environment QA1 and the application CMM this means that the 
CMM application is down in QA1 (but not QA2). 

Systems 
Systems can only depend on one or more other systems. If system A depends on 
system B it means that system A requires the services of system B to perform its 
normal function and if system B is down or unavailable then system A will be 
considered down too. 

Deployed Primes And Deployed Prime Versions 

Schemas 
Schemas have no dependencies on other primes. Schema versions can have 
dependencies on one or more other schema versions. If schema version A 
depends on schema version B it means that schema version A references data 
structures in schema version B.   

WSDLs 
WSDLs have no dependencies on other primes. WSDL versions can have 
dependencies on one or more other WSDL versions and one or more other 
schema versions. A dependency from WSDL version A to WSDL version B means 
that WSDL version A references WSDL structures in WSDL version B. A 
dependency from WSDL version A to schema version B means that WSDL 
version A references data structures defined in schema version B. 

Bundles 
Bundles can have dependencies on one or more ESB profiles and one or more 
application server profiles. Bundle versions can have dependencies on one or 
more landscapes. These two sets of dependencies work together to determine on 
which ESB and application servers bundle versions get installed. For example if 
bundle A has a dependency on the ESB profile Long-Running and bundle version 

What does it mean if multiple landscapes depend on the 
same environment? 
Although typically this won’t occur, multiple landscapes can depend 
on the same environments. This means that entities deployed to 
either landscape can run using end-user data in this referenced 
environment. 

 
 



Who, Why, What and How 

A 1.0.0 has a dependency on the landscape Release-Major then bundle version A 
1.0.0 will be installed on all ESBs in Release-Major that also have a dependency 
on the ESB profile Long-Running. 

Services 
All services (applications, webservices, and components) can have dependencies 
to one or more systems, applications, and webservices. A service with one of 
these dependencies means that the service requires the referenced entity to be 
available for the service to operate correctly. 

Application 
Managed applications (those developed for the NEACC application server) can 
have dependencies on one more application server profiles. Versions of managed 
applications can have dependencies on one more landscapes. These two sets of 
dependencies work together in the same way as they do for bundles. 
 
Unmanaged applications (those not developed for the NEACC application server) 
have only a base set of service dependencies. Versions of unmanaged applications 
can have one or more dependencies on environments. This dependency 
represents that the unmanaged application version is deployed to the referenced 
environment. 

Webservices 
Managed webservices (those developed for the NEACC ESB) can have 
dependencies on a single component and one or more ESB profiles. Versions of 
managed webservices can have dependencies on one or more landscapes. The 
dependencies on ESB profiles and landscapes works the same way as it does for 
bundles. The managed webservice dependency on a component means that when 
a webservice receives the request it forwards the message to the dependent 
component to perform the business logic. 
 
Unmanaged webservices (those not developed for the NEACC ESB) have only the 
base set of service dependencies. Versions of unmanaged webservices can have 
one or more dependencies on environments. This dependency represents that the 
unmanaged webservices version is deployed to the referenced environment. 

Components 
Components can have dependencies on one or more ESB profiles. Versions of the 
components can have dependencies on one or more landscapes. These sets of 
dependencies work identically to the way they do for managed webservices. 
 

Profiles 
Profiles have no dependencies. 

 
 


