

National Aeronautics and Space Administration (NASA)

OpenSource ESB

Version 4.0

Open Source ESB

 Page 2 of 26

Table of Contents

1. INTRODUCTION ..3

2. ENTERPRISE SERVICE BUS OVERVIEW ..4
2.1 ENTERPRISE SERVICE BUS DEFINED ...4
2.2 ESB VALUE ADDED SERVICES ...5
2.3 JAVA BUSINESS INTEGRATION OVERVIEW ..6
2.4 SERVICE REGISTRY ...8

2.4.1 Overview ..8
2.4.2 NEACC service registry ..8

3. OPENSOURCE ESB PLATFORM ARCHITECTURE ...9

3.1 GUIDING PRINCIPLES ..9
3.2 LOGICAL LAYERS ...10
3.3 IMPLEMENTATION DETAILS ..12

3.3.1 CIP ...12
3.3.2 Components ...13
3.3.3 Core ..15

4. ETL BROKER ..16
4.1 GUIDING PRINCIPLES ..16
4.2 LOGICAL LAYERS ...17
4.3 IMPLEMENTATION DETAILS ..19

4.3.1 CIP ...19
4.3.2 Workflow Controller ..19
4.3.3 Connector Extractors ...20
4.3.4 Data Staging Area ..20
4.3.5 Transformation Engines ...21
4.3.6 Rules Engines ...21
4.3.7 Connector Loaders ...21

5. OPENSOURCE ESB LANDSCAPE ...23

5.1 LANDSCAPE LEVELS ...23
5.1.1 Knowledge Transfer Level ..23
5.1.2 Development Level ..23
5.1.3 Runtime Level ..24

OpenSource ESB

 Page 3 of 26

1. INTRODUCTION
NASA Competency Center (CC) supports all enterprise services, technical services, and system to system
integrations on top of the OpenSource ESB platform. This platform is a collection of open source tools and projects
that have been pulled together (and sometimes augmented) to provide a complete development, runtime, monitoring,
and management toolset for NASA CC to support a SOA. At the center of this platform is the OpenSource ESB
which provides the runtime for all services and is built around the JBI implementation ServiceMix [1].

This white paper discusses the technical design and use of the OpenSource ESB.

OpenSource ESB

 Page 4 of 26

2. ENTERPRISE SERVICE BUS OVERVIEW
This section details NASA CC’s definition of an ESB, its purpose and role, and lays the groundwork for how the
OpenSource ESB was designed.

2.1 Enterprise Service Bus Defined
The term Enterprise Service Bus (ESB) is used to describe an architecture that utilizes Web services, messaging
middleware, intelligent routing and transformation. An ESB is a lightweight, ubiquitous integration backbone
through which software services and application components flow. Since the birth of the ESB concept, there have
been a number of suggestions as to what an ESB should be and do. This section will detail how NASA CC defines
an ESB and begin to lay the ground work for some of the guiding principles of the OpenSource ESB architecture.

An ESB is a service enabler. Its purpose is to expose provide value on top of existing services, data sources, and
systems. An ESB should never be used as the originator of data or a service. This means that an ESB should not be
used as a general-purpose application server (although it is possible to run an ESB from within an application
server). The typical role of an application server (J2EE, SAP, etc.) is to provide a platform upon which source
systems can be created. These source systems or service providers “own” the data they operate upon and the services
they offer related to this data; an ESB should never own data or services.

An ESB should be implemented with a decentralized architecture that allows it be scaled effectively and efficiently
to meet all demands placed upon it. This decentralized model is realized in multiple interconnected runtime engines
that can be distributed across numerous networks and machines. These interconnected runtimes allow applications to
interact with the ESB as if it were a single entity, which means a service can be deployed on any ESB station and
then accessed anywhere as part of the “Bus”. A side effect of this requirement for a decentralized architecture is that
an ESB must have a flexible and loose licensing model that does not hinder runtime distribution to more nodes on
the network.

An ESB uses XML as the standard communication language. Communication from most clients and some service
providers will use XML over various bindings and protocols (SOAP, HTTP, JMS, etc.). Even when XML is not
used externally between the ESB and clients or service providers, an ESB processes this non-XML data internally in
XML canonical form.

An ESB is built upon and supports open standards. An ESB should have strong support for open standard protocols
between clients and service providers, such as web services, SOAP, WSDL, HTTP, XML, JMS, and REST. This
requirement does not mean that an ESB does not provide proprietary connectors; generally an ESB will have to
communicate with legacy systems exposing their services using open standards. The extent to which an ESB
provides proprietary connectors is not central to the definition of an ESB. In addition to providing open standards
based communication, the ESB framework should both be built upon and provide extensions for using open
standards such as JBI, OSGI, and/or JMX. This architectural design point means that services can be moved
between ESB implementations with less effort and no dependence on vendor-supplied code, and that developers
already familiar with these open standards can be productive much more quickly.

An ESB should have services that can be easily found and consumable. A service registry is typically utilized to
address this requirement and contains the necessary information required to discover and consume the service. A
service registry can be implemented for machine discovery via a UDDI (universal description, discovery, and
integration) registry that allows SOAP based interrogation and access to the WSDL documents that describes the
protocol bindings and message formats. A service registry can also support a user interface to allow ESB consumers
to find and consume the services as needed.

In summary, and ESB is defined as a framework that adheres to the following axioms:

• An ESB is a service enabler, not service provider
• An ESB is implemented using a decentralized architecture
• An ESB uses XML as the standard language for communication
• An ESB supports open standards
• An ESB has services that are easily found and consumable

OpenSource ESB

 Page 5 of 26

2.2 ESB Value Added Services
In addition to meeting all the above requirements; an ESB also provides many value added features for the services
it exposes. These features are usually orthogonal to the business particulars of a service being exposed and should be
implemented in a generic fashion that (usually) does not require customization per each new service or integration.
While not exhaustive, the list below provides some of the most common ESB value added features (all of these are
supported on the OpenSource ESB platform):

Transformation

An ESB will often be used to transform the content of client requests to a format acceptable to one or
more service providers. This pattern of transformation is used so often that it really can not be
considered an optional feature for an ESB implementation to implement. The principal benefit of this
process is that the ESB can handle multiple, possibly client-specific, versions of a single service,
while the service provider operates only on the canonical model. These transformations are normally
implemented using XSLT (when dealing with XML) or possible scripting languages such as Ruby.

Protocol Bridging

Protocol bridging is another fundamental value added service that most ESB implementations
support. This is the process of transforming a request from one protocol to another. An example of
this would be a client making a SOAP request to the ESB, which then transforms the SOAP request to
a binary SAP RFC request. When the ESB receives a response from SAP, it then bridges the SAP
RFC response back into a XML SOAP response to send back to the client. Many times protocol
bridging is used in conjunction with transformation.

Security

A key benefit offered by an ESB is centralized security. An ESB should be nominally equipped with
utilities to implement standard security specifications such as WS-Security, SSL, and PKI. Many
service providers will lack the tools to implement a custom security solution to the extent possible via
an ESB. For example, more and more source systems have the ability to expose web services, but few
offer extensive security features. By channeling all services calls through an ESB, security can be
implemented across the enterprise landscape in a unified fashion.

Auditing

Auditing is used to record service transactions that occur throughout the ESB. It is normally
implemented with logging, events, and archiving. Logging is typically used for debugging purposes
and provides a trail for all executed code. Events are summaries of entire transactions that can be used
for monitoring purposes. Archiving is the process of recording all requests and responses that
occurred for a particular service. These messages can then be reviewed at a later time to verify the
transactional content.

Routing

Routing (or content-based routing) is the process of determining the endpoint destination of a service
call based upon the content of the service request.

Quality of Service

An ESB usually supports a number of message patterns offering quality of service: guaranteed
delivery (message persistence), in-order delivery, and once-and-only-once delivery. Guaranteed
delivery is used for asynchronous requests where clients can send an event to the ESB for processing
by some source system. The ESB will first persist the message, and then acknowledge that the
message has been received, and finally process the message. Since the message has been persisted,
the ESB can guarantee that the source system will ultimately receive the message, even if the service
is currently down. To satisfy in-order delivery, if a sequence of requests is sent to the ESB in some
implied order, the ESB will guarantee that this order will be preserved when sending to the source

OpenSource ESB

 Page 6 of 26

system for processing. In cases where once-and-only-once delivery is promised, an ESB will only
send one message to a source system for processing, even when receiving duplicate requests from one
or more clients.

Service Level Agreement

Service Level Agreements (SLA) can be implemented on the ESB to establish thresholds for
particular services, particular clients, and/or combinations of particular services and clients.
Thresholds may include the size of a request (or response), or the time or date that certain requests are
made. If certain thresholds are exceeded, the ESB can return an error response to the client without
involving the source system.

2.3 Java Business Integration Overview
The Java Business Integration (JBI) is a specification (JSR 208 [2]) that defines a standard, open architecture upon
which an ESB can be built and extended. This architecture dictates that third-party components may be “plugged in”
to any standard ESB infrastructure then interoperate in a reliable, predictable fashion across multiple vendors’
conformant ESB implementations. In the same way that J2EE standardized Java-based application servers, JBI seeks
to standardize ESB frameworks.

JBI Component Plug-in Framework

As shown in the diagram above, JBI defines a standard core container; other components, which may in turn be
containers themselves, can be plugged into this central container. In effect, JBI can be represented as a container of
containers. The JBI specifications dictate how these components interoperate inside the larger container: plug-in
components inside a JBI container communicate in a service-oriented fashion via message exchanges based closely
on WSDL 2.0.

OpenSource ESB

 Page 7 of 26

The plug-in components are divided into two distinct categories: service engines (SE) and binding components
(BC).

Service engines provide business logic and transformation services to other components, and may in turn consume
other such services. Binding components provide connectivity to services external to a JBI environment. From JBI
component API standpoint, there is no distinction between SEs and BCs, however the specification is clear that a
logical distinction between the two types of components should be made. Separation of business and processing
logical from communications logic reduces implementation complexity, and increases flexibility.

Service engines and binding components can function as service providers, consumers, or both. SEs can integrate
Java-based applications (and other resources) or applications with available Java APIs. BCs can integrate
applications (and other resources) that use remote-access technology that is not directly available in Java. This
connectivity can involve communications protocols or services provided by Enterprise Information Systems (EIS)
resources.

The interface for all component interactions is WSDL 2.0. Using this interface promotes a loosely-coupled
architecture in which components can be easily exchanged and replaced without affecting the entire system. As
shown in the diagram below, components never directly interact with one another; instead, all communication
occurs through a normalized message router (NMR). The NMR is the backplane of a JBI runtime environment.

JBI Component Interaction

The above diagram is an example of a component exchange through the message router. In this example the SE
requires the services of a BC. To initiate communication the SE sends an XML message to the NMR targeted to the
BC’s endpoint (service address). When the BC receives the request, it performs some communication with an
external system (e.g. SAP, Database, etc.) to fulfill its request and sends the response back to the NMR. The NMR
then sends the response back to the SE which continues performing its function based on this response. It’s
important to note that the SE in this example has no particular knowledge of the BC’s implementation on external
system communication. The SE’s only knowledge is through the BC’s service definition (WSDL).

The affect of JBI is targeted more for the developers of ESB components then clients of a JBI based ESB. JBI
allows for developers to compose new applications and services that can be easily extended later as requirements as
change. This benefit is the result of a system integration style imposed by JBI that is similar to a service-oriented
approach. Applications will be created from the composition of services as opposed to monolithic code.

OpenSource ESB

 Page 8 of 26

The end goal of JBI is to bring an integration middleware platform that prevents vendor lock in (an open
architecture). Changing application server or integration middleware vendors will no longer mean abandoning a
component's integration technology. In addition, JBI's open, standards-based approach to system integration will
likely lead to a wider choice of integration technologies, as you won't be restricted to a single vendor's integration
product catalogue.

2.4 Service Registry
2.4.1 Overview

Years after the rise in popularity of Web Services and SOA, it's largely considered that the service registry (UDDI)
function of these technologies has been a complete failure [2]. The biggest driver for this is because service
registries were originally designed to be machine discoverable and consumable at runtime, which dictated an overly
complex and unworkable implementation of a service registry. To address this NEACC has implemented service
registry designed for humans, not machines. In addition to meeting the base requirement of ensuring ESB services
are easily found and consumable the NEACC service registry has additional entities that construct a complete
picture of the NEACC enterprise offering.

2.4.2 NEACC service registry

The NEACC service registry is referred to as MetaHouse. MetaHouse provides the means to keep track of IT related
entities throughout NEACC, NASA, and external integrated landscapes. MetaHouse provides a single housing of
information of NEACC application and system services that are:

• Open – provide multiple ways to access (HTML, RSS, JSON, XML)
• Searchable – provide ability to search for services
• Subscribe(able) – provide ability to subscribe to service events

MetaHouse is web-based application and is available to NASA internal users at (link removed).

OpenSource ESB

 Page 9 of 26

3. OPENSOURCE ESB PLATFORM ARCHITECTURE
The OpenSource ESB platform incorporates all of the features of an ESB defined in Section 2 in addition to the
following features not attributed directly to an ESB runtime:

• Development Tools
• Release Control Tools
• Runtime Monitoring
• Runtime Management

This section will cover the technical details and architecture of this platform.

3.1 Guiding Principles
This first iteration of the OpenSource ESB began as a simple Apache Axis based SOAP implementation in the fall
of 2004. Since then there have been numerous changes and open source projects added to the platform. Throughout
all these changes (and for changes going forward) the following guiding principles are used to drive all architecture
decisions.

Java Based Implementation

The OpenSource ESB is implemented in Java. Java was selected for several important reasons. First,
it has one of the largest open source communities associated with any mainstream programming
language. By simply electing to use Java, many enterprise-class open source projects are readily
available. Second, Java already has a large base of programmers fluent in both the core language and
standard libraries. Third by running on top of the Java the ESB can be hosted on various operating
systems. Currently the OpenSource ESB runtime has been verified to run on Solaris, Linux, Windows
and Mac. Lastly the support for other languages (than Java) that run from within the JVM are
increasing in number. This will allow developers to choose whatever programming language (e.g.,
Ruby, Python, Java, Groovy, Scala) is most applicable for a particular service implementation within
the ESB.

Open Source

The use of open source software and tools is an important part of NASA CC platform. Using open
source provides several major advantages over a closed or proprietary system.

§ No Black Boxes – By using open source software developers have access to the source
code and the right to modify it. This right removes constraints on quickly addressing bugs
or feature gaps in the underlying platform.

§ The Community – Popular open source projects (like the ones the OpenSource ESB is
built on) provide excellent support in the form of documentation, user forums and
mailing lists. This helps in learning the platform but more importantly developers can get
immediate assistance from hundreds of other users and developers when they run into an
issue they are not able to solve themselves.

§ Emphasis On Open Standards – Due to the freeness of open source software, developers
of these platforms are not motivated by profit to promote vender lock-in. This leads to
more importance being placed on supporting open, well accepted standards that make it
easier to move to different platforms in the future if desired.

§ Security – Open source software typically has many more eyes verifying the quality of
the software being used then closed source software. It has been proven that security by
obscurity (alone) does not work.

§ No Distribution Costs – One of the characteristics of an ESB is that it can scale quickly
as needed. By using open source software there are no distribution costs associated with
the platform to prevent this (or slow it down) from occurring.

§ Commercial Support Options – Using open source software does not preclude the option
of purchasing commercial support for the platform if desired. There are many companies
that provide support and indemnification for common open source platforms.

OpenSource ESB

 Page 10 of 26

JBI Compliance

Adherence to the Java Business Integration is a strict requirement for the design of the OpenSource
ESB. This specification (Section 2.3) is backed by Sun Microsystems and is considered important for
the following important benefits:

§ Component Isolation – Interactions between components follow a very strictly defined
process through the normalized message router. Isolation between components is
enforced down to the thread level (threads are not shared between components). This is
important for several reasons. First this implementation isolation promotes reuse. Since
implementation details are hidden between components there is less tendency to couple
logic across components. Second, this isolation provides for a more fault-tolerant system.
A component going down or behaving unexpectedly will have no direct affect on other
components that don’t require its services. Lastly the independence of components allows
for highly concurrent “modules” of code which improves speedup [4] on multi-processor
machines.

§ Scalability – The message exchange pattern for JBI is modeled after the Staged Event
Driven Architecture (SEDA [5]). SEDA increases scalability by reducing the total
number of threads required to process increasing requests (while limiting reduction in
response time).

§ Hot Deployment/Update – JBI provides a very well defined procedures and interfaces for
deploying and un-deploying components on the fly without requiring a restart of the ESB.
As an ESB becomes the focal point for all system interaction throughout a landscape this
feature becomes critical so services (components) can be added, removed, and updated
without affecting other services.

§ Transaction Visibility – Internal communication between components is accomplished
using (binary) XML across the message router. This XML can be easily captured and
recorded (auditing) to provide fine grain visibility of what data and processes and
particular transaction involves.

§ Standards Based – All NEACC developed components adhere strictly to the JBI API and
have no dependencies on server specific implementations (ex. ServiceMix). Replacing
the JBI implementation with another (Mule, OpenESB, etc.) can be accomplished without
changing any component logic.

Lightweight

The OpenSource ESB has lightweight architecture: it can be deployed and run in a Java Standard
Edition (J2SE) environment and does not require the services of a Java Enterprise Edition (J2EE)
application server. If desired, it can also be configured to run inside any Java-compliant servlet
container. This increases the number of target environments that the OpenSource ESB can be
deployed to.

System Failure Isolation

System failure isolation is an important principal achieved on the OpenSource ESB. This means there
are no systems that the ESB interacts with that are required to be up for the ESB to be operational. For
example all database configuration information (general configuration, system connection parameters,
security information, etc.) is loaded into memory registries and accessed internally when needed for
operation to allow the ESB to function properly even when its database goes down. While individual
services will have critical path dependencies on external systems, the ESB runtime should continue to
run as expected and provide use for services that do not interact with downed systems.

3.2 Logical Layers
The OpenSource ESB runtime is divided into the three logical layers: core, components, and client interaction points
(CIPs). These logical layers interact with clients and service providers (or source systems) as detailed in the figure
below:

OpenSource ESB

 Page 11 of 26

OpenSource ESB Logical Layers

Each layer in the architecture interacts only with other, adjacent layers. The layers are loosely coupled to minimize
the impact on adjacent layers as changes occur. For example, ServiceMix is currently used as the JBI
implementation (core module), but it could be exchanged for another implementation (e.g. OpenESB) without
affecting the components that run on top of it.

Clients

Clients are systems that initiate interaction with the ESB using the SDA, EDA, or ETL pattern (in the
case that a client is triggering an ETL transaction). Clients access services on the ESB through CIPs,
normally communicating over open standard protocols such as SOAP or REST over HTTP.

Service Providers

Service providers are the source systems through which services located on the ESB are implemented.
These service providers are called from respective binding components over various protocols, both
open and proprietary. Interaction between clients and service providers never occurs directly, but
always through NASA-ESB.

Client Interaction Points

Client interaction points provide the communication gateway for client interaction. Once a CIP
receives a request from a client, it routes that request to the appropriate components (usually a service
engine) for processing. Little or no custom code should be required for this layer as the bulk of the
business logic for any service should be contained within a component. This layer also handles all
client-based security (authentication, authorization, etc.).

Components

JBI Components are where most of the logic for services within the OpenSource ESB is contained.
Service Engines (SE) provide the business logic, transformation, and coordination between other
components. They can be either generic (XSLT, Rules Engine) or integration/service specific.

OpenSource ESB

 Page 12 of 26

Binding components are used to make outgoing calls to service providers from the ESB. In addition to
providing protocol service operation, binding components should provide built-in features such as
archiving, event capturing, and statistics.

Core

The core layer encompasses the JBI implementation and a set of framework libraries that are globally
accessible within the system. The JBI implementation provides the communication infrastructure for
all component interaction (specifically the normalized message router) and supports all JMX
management features defined within the JBI specification. The framework libraries are custom
develop code that is reusable across many components and doesn’t make sense to encapsulate as a
component itself. An example of this type of code would be a system configuration library. Typically,
component developers would not operate at this layer.

3.3 Implementation Details
3.3.1 CIP

The CIP layer as described above provides external access for calling clients. Each CIP type is implemented as a BC
component but all communications flows from the outside in to the message router (in other words other
components never call these CIP BCs). The following list contains the currently supported list of CIP transport types
and the details of each implementation.

SOAP/REST over HTTP(s)

SOAP and REST over HTTP is supported with the HTTP BC. This component embeds the Tomcat
[6] servlet container to support HTTP and runs the Apache Axis2 [7] web application to support
SOAP and REST requests. The majority of client requests processed on the ESB occur over this
transport. The Apache Axis2 stack was chosen to support SOAP and REST for the following reasons:

§ Speed – Axis2 uses its own object model and StAX (Streaming API for XML) parsing to
achieve significantly greater speed than earlier versions of Apache Axis.

§ Low Memory Foot Print – Axis2 was designed ground-up keeping low memory foot
print in mind.

§ Hot Deployment – Capable of deploying Web services and handlers while the system is
up and running.

§ Asynchronous Web Services – Supports asynchronous Web services and asynchronous
Web services invocation using non-blocking clients and transports.

§ Component-Oriented Deployment – You can easily define reusable networks of
Handlers to implement common patterns of processing for your applications, or to
distribute to partners.

§ WS-* – Provides support for the major WS-* specifications including but not limited to:
• WS-Security, WS-Signature, WS-Encryption
• WS-Notification, WS-BaseNotification, WS-Topics, WS-BrokerNotification
• WS-Addressing, WS-Eventing, WS-Enumeration
• WS-Policy*
• WS-ReliableMessaging, WS-Reliability, WS-RM

§ WSDL Support – Supports the Web Service Description Language, version 1.1 and 2.0.
§ Add-Ons – Several Web services specifications have been incorporated including

WSS4J [8] for security, Sandesha [9] for reliable messaging, and Kandula [10] which is
an encapsulation of WS-Coordination, WS-AtomicTransaction and WS-
BusinessActivity.

JMS

JMS synchronous messaging is supported using the ActiveMQ [11] JMS server. A JMS BC is used to
retrieve JMS messages from a runtime defined message server and process them within the ESB. The

OpenSource ESB

 Page 13 of 26

JMS BC run in either embedded or external model. In embedded mode the ActiveMQ server is started
within the same JVM as the ESB runtime. In external mode, the BC connects to external ActiveMQ
server(s) to retrieve incoming messages.

RAP (Reliable Asynchronous Processing)

JMS asynchronous messaging is supported using Reliable Asynchronous Processing. RAP is
implemented in the ESB as a binding component. The basic workflow of the component is similar to
the current persistence binding component with the main difference being ActiveMQ replaced with
the RAP storage engine. The RAP storage engine is implemented as a library that runs in the same
JVM as the RAP component. It uses a local hard drive as its primary storage mechanism. If local
storage is unavailable it reverts to either SAN storage or database storage.

sFTP

An sFTP BC is used to support the SFTP protocol. The FTP server implementation used for this BC
is from the MINA [12] project and is fully FIPS 140-2 compliant.

SCP (over SSH)

Secure copy over SSH is implemented as a BC using the SSHTools [13] project. This protocol
implementation and FTP both allow the ESB to receive files internally that generally will trigger an
asynchronous event to occur.

SAP RFC

The SAP Remote Function Call protocol is supported through the SAP server BC. This BC uses the
JCo (Java Connector) library to support incoming calls from the SAP.

RMI

The ESB supports Java Remote Method Invocation (RMI) through the Agent component. In addition
to supporting external client RMI calls, the Agent component is responsible for ESB to ESB
communication in support of service location transparency.

3.3.2 Components

The OpenSource ESB runs a variety of components (both service engines and binding components).
A distinction is made between service specific and common (reusable) components. Service specific
components encapsulate the business logic of a service (transformation, routing, etc.) while common
components implement a generic function reused by service components. The list below captures
most of the common components developed for the OpenSource ESB platform. In addition to the
common components developed locally, any JBI compliant component can be re-used on this
platform.

Common Service Engines

XSLT SE

The XSLT service engine provides a generic interface for performing XSLT transformations.
This component uses the Xalan [14] Apache library.

Scripting SE

The Scripting service engine provides a framework for running any JSR 223 [15] compliant
scripting engine. This allows developers to create service logic using languages other then Java.
Currently the Ruby, JavaScript, and Groovy programming languages are supported.

Rules Engine SE

OpenSource ESB

 Page 14 of 26

The Rules Engine service engine allows for the declarative execution of rule sets based on
trigger events from other components. The underlying Rules Engine is based on Ruleby [16].

Common Binding Component

SAP BC

The SAP BC allows for outbound calls to SAP Remote Function Calls (RFC) using the JCo
(Java Connector) library.

Web Service BC

The Web service binding component allows other components to make generic web service calls
using SOAP or REST over HTTP/S. The Apache Axis2 client library is used to make the Web
service calls.

MDX BC

The MDX (Multidimensional Expression) binding component is a highly specialized component
for making MDX queries to BW information cubes.

RAP BC

The Reliable Asynchronous Processing binding component is the primary mechanism
supporting asynchronous messaging. It uses the RAP storage engine for all message stores and
provides features such as throttling, holding, forwarding, message inspection and message
manipulation.

Persistence BC

The Persistence BC allows for asynchronous processing of messages. It uses ActiveMQ for all
message stores and provides features such as throttling, holding, and forwarding. All
asynchronous integrations utilizing the Persistence BC will be transitioned over to the RAP BC.

Email BC

The Email BC allows for sending SMTP based messages.

LDAP BC

The LDAP BC allows for making LDAP queries using the Directory Service Markup Language
[17] (DSML).

JDBC BC

The JDBC BC provides generic data access to any JDBC compliant database.

DCOM BC

The DCOM BC provides generic data access to any DCOM compliant service endpoint.

Additional BC Support

The OpenSource ESB provides the ability to utilize the standard reference ServiceMix binding
components and/or develop custom binding components for any proprietary API system
connector.

OpenSource ESB

 Page 15 of 26

3.3.3 Core

The Core level includes the JBI implementation and the framework libraries. The JBI implementation
is supported with the ServiceMix implementation. Any non-JBI features provided by ServiceMix
have been avoided at the above layers to prevent implementation lock in. The framework libraries
consist of common code re-used across the various layers and includes functionality for:

§ Security
§ Configuration
§ Utilities
§ JBI Support

The diagram below captures overall technical design of the OpenSource ESB. The majority of open
source (and proprietary) projects and libraries that are currently used are listed at the various layers.

OpenSource ESB Technical Design

OpenSource ESB

 Page 16 of 26

4. ETL BROKER
NASA CC has developed an Extract Transform Load (ETL) broker runtime that runs on top of the Open ESB
architecture. This runtime provides integration with systems that do not easily support the SDA and EDA integration
patterns and require batch data replication from other systems (i.e. ETL). The broker runs off a simple table-driven
interface which allows for the rapid implementation of ETL integrations with little to no development code. A
common reusable set of ETL based connectors (for extracting and loading) have been developed and implemented
as JBI Binding Components. These common components provide a solution to the majority of systems requiring
ETL based integration. In cases where more complex integration logic is required, a custom ETL binding
component can be developed to service this scenario.

4.1 Guiding Principles
The ETL broker platform for the NASA CC has been in use since 2001. The following guiding principles have been
used to drive the design of this broker runtime.

OpenSource ESB Compliant

An important goal the ETL broker runtime is that it runs on top of the OpenSource ESB runtime.
Extractors and loaders have been developed as JBI compliant binding components. The ETL flow
controller has been developed as a JBI compliant service engine. The advantages of running ETL
integrations on the same platform as our SDA and EDA based services are:

§ Development Cohesion – Many times the same developers who develop components for
SDA or EDA based services will also be tasked with developing ETL integration
components. Having all of these pieces run on the same JBI architecture and interact in a
similar fashion reduces the context switching and knowledge ramp up time between the
two platforms.

§ Release Management Cohesion – Updates to the ETL runtimes are executed in a similar
fashion to the ESB runtime.

§ Monitoring Cohesion – Operators who provide monitoring support of the production
based runtimes use the same tools and procedures for diagnosing problems that occur.

Pattern Based Development

A very large majority of ETL based integrations fall into well established interaction patterns. A goal
of the ETL platform is to take advantage of this regularity so developers can rapidly construct
common ETL integration patterns and do not have to repeatable develop the same type of code. To
support this goal a workflow engine has been developed where developers can wire together existing
loaders and extractors and provide a minimal amount of transformation logic to complete
development of common pattern based integrations.

Separation of Concerns

The ETL broker has been designed into four distinct layers (4.2 Logical Layers). This clear separation
of concerns between the working pieces of the ETL broker allows new systems (source or destination)
to quickly be supported on the platform as only the external communication with that system needs to
be implemented (as an JBI BC loader or extractor).

OpenSource ESB

 Page 17 of 26

4.2 Logical Layers
The ETL broker runtime is divided into the following logical layers: CIPs, workflow controller, connector
extractors, transformation engines and connector loaders. These logical layers interact with source and destination
systems as detailed in the figure below:

ETL Broker Logical Layers

Each layer in the architecture interacts only with other, adjacent layers. The layers are loosely coupled to minimize
the impact on adjacent layers as changes occur.

Trigger

Triggers are events that initiate an ETL transaction. The trigger event contains no actual data to be
processed but only contains the information required to start up the process. Triggers can be initiated
from external systems that require ETL services or internally from the ETL broker itself (the CRON
service engine is an example of an internal trigger).

CIPs (Client Interaction Points)

The CIP layer processes all trigger events and forwards the request on to the workflow controller to
begin processing.

Workflow Controller

The workflow controller drives the interaction between the other ETL broker logical layers. It is
configured using a workflow state diagram syntax and supports such constructs as serial and/or
parallel execution, multi-condition based branching, and intelligent error resolution and notification.

OpenSource ESB

 Page 18 of 26

The workflow controller is also responsible for handling the trigger events that initiate and ETL
process. This layer is implemented as a JBI service engine.

Source Systems

Source systems are systems that contain the originating data. This data will be extracted from the
source system and eventually put into one or more destination systems.

Connector Extractors

Connector extractors are responsible for extracting data from source systems. These extractors are
implemented as JBI binding components.

Transformation Engines

Once the data has been housed internally by the connector extractors, the transformation engines are
applied to the data to place it in an acceptable form for the destination systems. The transformation
engines are implemented as JBI service engines.

Connector Loaders

Connector loaders are responsible for loading the internally stored (and typically transformed) data
into the destination systems. These loaders are implemented as JBI binding components.

Destination Systems

The target systems are systems that data (after processing) is placed into.

OpenSource ESB

 Page 19 of 26

4.3 Implementation Details
This section will cover the implementation specifics of the ETL broker on top of the OpenSource ESB. The
following diagram depicts the major pieces of this platform:

ETL Broker Technical Implementation

4.3.1 CIP

The CIP (Client Interaction Point) layer as described above provides external access for calling clients to initiate
trigger that initiate an ETL transaction. The CIP layer is identical to the one described in 3.3.1 ESB CIP Layer.

4.3.2 Workflow Controller

The workflow controller is implemented as a JBI service engine. It communicates over the normalized message
router to coordinate with the extractors, transformers, and loaders to complete an entire ETL transaction.

OpenSource ESB

 Page 20 of 26

4.3.3 Connector Extractors

The connector extractors are responsible for extracting out data from source systems and placing the data into a
common form in the internal data staging area. These extractors are implemented as JBI binding components. The
following list contains the currently supported list of extractor transports:

SOAP/REST over HTTP(s)

The ETL SOAP extractor supports pulling data from any Web service (SOAP or REST). Once the
data has been extracted, XSLT is used to transform the data into common ETL form.

sFTP

The sFTP extractor supports FTPS protocol for pulling files and loading them into common ETL form
and is fully FIPS 140-2 compliant.

JMS

The JMS extractor can be configured to work with any JMS compliant client library. ActiveMQ is
currently in use.

SAP

The SAP Remote Function Call (RFC) protocol is used with inbound SAP extractor. It supports
loading data from SAP into the common data staging area.

SCP (over SSH)

Secure copy over SSH is implemented as a BC using the SSHTools project. This protocol
implementation and FTP both allow the ETL broker to receive files internally into the data staging
area for processing.

File

The file extractor supports pulling files directory off of mapped drives on the ESB.

DB

Data from a relational database can extract using the DB extractor. Any relational database were a
JDBC compliant driver is available can be used.

LDAP

LDAP can be used as a source (only) system that the LDAP extractor can pull data from.

Additional Support

The OpenSource ESB provides the ability to utilize the standard reference ServiceMix connector
extractors and/or develop custom connector extractors for any proprietary API system connector.

4.3.4 Data Staging Area

The data staging area is an internal data source that the ETL broker uses to house data from source
systems that needs to be (eventually) loaded into destinations systems. This data store is currently
implemented as an Oracle database. A common ETL schema is used to store all information. By using
this central data store (and the common schema), connector extractors and connector loaders can be
decoupled from each other and paired up as needed. It also provides an easily accessible location to
perform transformation on by the various transformation engines.

OpenSource ESB

 Page 21 of 26

4.3.5 Transformation Engines

Once the data from source systems is housed internally in the data staging area, transformations can
be executed against this data to prepare it for targeted destination systems. The following
transformation engines are supported:

SQL Transformation

The SQL transformation engine provides internal database transformations using PL/SQL. These
transformations have very high performance and are ideal for transforming very large datasets.

Scripting Transformation

The scripting transformation engine allows developers to express transformations using a full fledged
programming language (currently Java or Ruby). Although the scripting transformation engine does
not achieve the same performance as the SQL transformation, in many scenarios the added flexibility
and expressiveness is worth this trade off.

4.3.6 Rules Engines

Once the data from source systems is housed internally in the data staging area, various rules engines
can be applied against these datasets (either pre or post transformation) to execute a set of tasks. The
Ruleby service engine is currently used to support this feature.

4.3.7 Connector Loaders

The connector loaders are responsible for taking the data from the data staging area and loading them into
destination systems. These loaders are implemented as JBI binding components. The following list contains the
currently supported list of loader transports:

SOAP/REST over HTTP(s)

The ETL SOAP loader supports sending data to any Web service (SOAP or REST).

sFTP

The sFTP loader supports the FTPS protocol for placing data files to destination systems and is fully
FIPS 140-2 compliant.

JMS

The JMS loader can be configured to work with any JMS compliant client library and is used to send
JMS messages that contained the extracted (and transformed) data.

SAP

The SAP Remote Function Call protocol is used with outbound SAP loader to send data to SAP.

SCP (over SSH)

Secure copy over SSH is implemented as a BC using the SSHTools project. This protocol
implementation and FTP both allow the ETL broker to take internally stored data and place them as
external files

File

The file extractor supports placing files into directories off of mapped drives on the ESB.

DB

Data can be loaded into an external relational database using the DB loader. Any relational database
were a JDBC compliant driver is available can be used.

OpenSource ESB

 Page 22 of 26

LDAP

LDAP can be used as a source (only) system that the LDAP extractor can pull data from.

Additional Support

The OpenSource ESB provides the ability to utilize the standard reference ServiceMix connector
loaders and/or develop custom connector loaders for any proprietary API system connector.

OpenSource ESB

 Page 23 of 26

5. OPENSOURCE ESB LANDSCAPE

OpenSource ESB Landscape

The diagram above captures all the tools and systems used to develop services and systems on the OpenSource ESB
platform. The arrows on diagram capture the flow of code throughout the landscape. The landscape contains the
following levels: knowledge transfer, development, runtime and release control.

5.1 Landscape Levels

5.1.1 Knowledge Transfer Level

The knowledge transfer level is where all tools related to knowledge transfer reside. The Atlassian [18] suite of
products is currently used to support this level.

Confluence

Confluence is used as the OpenSource ESB wiki. The wiki is used to capture all tutorials, lessons
learned, best practices, and coding standards for the OpenSource ESB platform.

Jira

Jira is used to track and manage all software changes and configuration across the NEACC landscape.

Bamboo

Bamboo is the continual build server used to verify all unit tests for components and framework level
code. Code coverage reports are generated with Clover.

5.1.2 Development Level

All local development of components and framework level code is at this level. Developers run a local instance of
the OpenSource ESB that they use to test out new development until its ready to be promoted the runtime level.

OpenSource ESB

 Page 24 of 26

Local ESB Runtime

This local runtime mimics the functionality of the ESB instances in the runtime level. For the majority
of the developers on a Window’s OS, the ESB is installed as local service that can be started and
stopped as needed.

Local Database

The local OpenSource ESB uses a local database installed on the developers machine. NASA CC
developers are currently using Oracle Express and SQL Developer.

ESBuilder IDE

The ESBuilder is a set of plugins for Eclipse [19] developed specifically for working with the
OpenSource ESB platform. These plugins allow developers to quickly develop components in
addition to installing their components onto the local ESB instance.

ETL Editor IDE

The ETL Editor is a set of plugins for Eclipse developed specifically for working with the ETL broker
platform. These plugins allow developers to quickly develop ETL integration flows in addition to
installing their components onto the local ESB instance.

Source Code Repository

The source code repository is used to store and provide history for all OpenSource ESB source code.
Subversion is currently used to provide this.

5.1.3 Runtime Level

The runtime level is where clients and external systems interact with the OpenSource ESB.

ESB Environments

The ESB environments contain the OpenSource ESB instances. The following environments are
supported:

Development – The development environment is managed by the developers and they add and update
components as needed. This is the environment that initial development with clients is conducted in
and is the least stable environment.

Test – The test environment is managed by the leads on the development team. Components are
added and updated when needed but the constraints on these updates are tighter and provide for a
more stable development environment for external clients and systems.

UAT – The UAT environment provides an iterative release environment with unique support for both
minor (daily, weekly, monthly) and major releases (semi-annual i.e., 15.1, 15.2). The UAT
environment is managed by a separate operations group and provides a controlled environment for
iterative end-to-end integration testing.

Stage – The stage environment provides an identical environment (both software and hardware
configuration) to the production environment. This environment is managed by a separate operations
groups and provides the runtime for all acceptance testing before being promoted to production.

Production – The production environment provides a highly scalable and fault tolerant platform
supporting the OpenSource ESB and ETL broker instances. This environment is managed by a
separate operations group that provides 24x7 support.

Database Environments

OpenSource ESB

 Page 25 of 26

Database environments mirror the development, test, UAT, stage and production ESB environments.
Oracle is the database product currently used for development activities.

Monitoring/Management

Monitoring and management is used by developers and operators to provide support for the ESB
environments. The following tools are used:

ESM – The ESM (Enterprise Service Monitor) is a web application developed specifically to support
the OpenSource ESB platform. This tool provides real-time transaction visibility, error and alter
notification, trending reports, and system status.

JConsole – JConsole interfaces with the OpenSource ESB using JMX [20]. The OpenSource ESB
provides a fully configurable JMX interface for making on the fly adjustments.

Release Repository

Since code deployment to the staging and production environments occurs outside of the development
group, a separate release repository is used that contains the runtime binaries need to update the ESB
with. This repository is populated with compiled code (that has passed all unit tests) from the source
code repository.

Release Promotion Gateway

The release promotion gateway is the tool used by development leads to promote code (components,
framework, etc.) from the source code repository to the release repository. After the code is checked
out from the source code repository, it must compile appropriately (if valid) and pass all unit tests
before the binaries are published to the release repository.

Release Migration Gateway

The release migration gateway is the tool used by operators to publish binaries to the OpenSource
ESB instances. This gateway pulls all binaries from the release repository.

OpenSource ESB

 Page 26 of 26

 References

[1] ServiceMix http://servicemix.apache.org

[2] UDDI http://www.cio.com/article/2433285/service-oriented-architecture/why-uddi-sucks html

[3] An ESB should have services that can be easily found and consumable

[4] Amdahl’s Law http://en.wikipedia.org/wiki/Amdahl's law

[5] SEDA Staged Event Driven Architecture http://www.eecs.harvard.edu/~mdw/papers/seda-sosp01.pdf

[6] Tomcat Web Application Server http://tomcat.apache.org

[7] Apache Axis2 http://ws.apache.org/axis2

[8] WSS4J (WS-Security) http://ws.apache.org/wss4j

[9] Sandesha (WS-RM) http://ws.apache.org/sandesha

[10] Kandula (WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity) http://ws.apache.org/kandula

[11] ActiveMQ JMS Server http://activemq.apache.org

[12] MINA (FTP Project) http://mina.apache.org

[13] SSHTools http://sourceforge net/projects/sshtools

[14] Xalan (XSLT Parser) http://xml.apache.org/xalan-j

[15] Scripting for the Java Platform JSR 223 http://jcp.org/en/jsr/detail?id=223

[16] Ruleby (Ruby based rules engine) http://ruleby.org/wiki/Ruleby

[17] DSML (Directory Services Markup Language) http://www.oasis-open.org/committees/dsml/docs/DSMLv2.doc

[18] Atlassian http://www.atlassian.com

[19] Eclipse http://www.eclipse.org

[20] JMX (Java Management Extensions) http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement

